

René Descartes (1596 - 1650)

La méthode originale des isopérimètres

$$\forall L \in \mathbb{R}^{+} \qquad r_{0} = \frac{L}{8} \qquad r_{n+1} = \frac{r_{n} + \sqrt{r_{n}^{2} + \frac{r_{0}^{2}}{4^{n}}}}{2}$$

$$S_{n} = \frac{L}{2r_{n}} \qquad S_{n} \xrightarrow{n \to \infty} \pi$$

Tranches de vie

René Descartes est né à la Haye en Touraine précisément le *31 mars 1596*. Ce fut certainement le philosophe français le plus célèbre! Mais il ne fut pas que cela... Après une licence de droit en *1616*, il choisit le métier des armes en Hollande puis chez le Duc de Bavière jusqu'en *1620*. Rentré en France en *1625*, il y rédige ses travaux philosophiques - fameux, mais ce n'est pas l'objet de ce site! - et fait paraître des travaux scientifiques sur l'optique, l'astronomie, la biologie et surtout la géométrie. En *1631*, paraît ainsi *Géométrie* dans lequel il définit les cooordonnées cartésiennes d'un point. Notons au passage que c'est à Descartes que l'on doit l'habitude de représenter les quantités connues par les premières lettres de l'alphabet *a,b,c,d...* et les inconnues par *x,y,z*. Il meurt en *1650*.

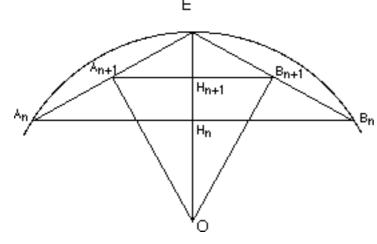
Autour de π

Après son décès, on trouvera dans ses papiers la *méthode des isopérimètres*. Elle consiste à faire le contraire de la méthode d'<u>Archimède</u> c'est à dire à déterminer le rayon d'un cercle dont le périmètre est fixé à l'avance. C'est une construction entièrement géométrique...

Démonstration

Ou plutôt construction, car ce n'est pas une réelle démonstration mathématique ! On considère une suite de polygones réguliers P_0 , P_1 , P_2 ... P_n respectivement 2^2 , 2^3 ,..., 2^{n+2} côtés ayant, - c'est important - un même périmètre L

On considère la figure suivante, avec $A_n B_n = C_n$ et $OH_n = r_n$.



Cherchons une relation de récurrence entre r_{n+1} et r_n étant donné que r_n tend vers le rayon du cercle.

On sait que $2^{n+2} C_n = L$ car L est le périmètre du polygone P_n de côté C_n . Cette relation étant valable pour tout $n \in N$, on a aussi $2^2 C_0 = L$. Pour P_0 , on a un carré donc

 $OH_{0} = C_{0}/2 = r_{0}, \text{ donc } r_{0} = C_{0}/2 = L/(2.2^{2}) = L/8$

Soit E le milieu du petit arc A $_n$ B $_n$. Le segment qui joint les milieux A $_{n+1}$ et B $_{n+1}$ de [EA $_n$] et [EB $_n$] est le côté de P $_{n+1}$. Toute l'histoire va être géométrique, alors concentrons-nous !

On a A_{n+1} $B_{n+1} = C_{n+1} = L/2^{n+3}$: en effet, par le théorème de ce cher Thalès,

$$\frac{E\mathcal{A}_{z+1}}{E\mathcal{A}_{z}} = \frac{\mathcal{A}_{z+1}\mathcal{B}_{z+1}}{\mathcal{A}_{z}\mathcal{B}_{z}} \quad \text{or} \quad \frac{E\mathcal{A}_{z+1}}{E\mathcal{A}_{z}} = \frac{1}{2} \quad \text{down} \quad \mathcal{A}_{z+1}\mathcal{B}_{z+1} = \frac{1}{2} \, \mathcal{A}_{z}\mathcal{B}_{z}$$

Dans le triangle rectangle OEA_{n+1} (car OA_n E est isocèle), on a

 $A_{n+1} H_{n+1}^{2} = EH_{n+1} *H_{n+1} O$

Mais montrons-le si ce n'est pas évident!

On a d'une part

 $EO^{2} = (EH_{n+1} + H_{n+1} O)^{2} = EH_{n+1}^{2} + 2EH_{n+1}^{2} + H_{n+1} O + H_{n+1} O^{2}$ $donc EH_{n+1} \cdot H_{n+1} O = \frac{1}{2} EO^{2} - \frac{1}{2} EH_{n+1}^{2} - \frac{1}{2} H_{n+1} O^{2}.$

D'autre part, $A_{n+1}H_{n+1}^2 = A_{n+1}E^2 - EH_{n+1}^2$ par pythagore et $A_{n+1}H_{n+1}^2 = OA_{n+1}^2 - OH_{n+1}^2$, donc on a :

$$\begin{split} \mathcal{A}_{z+1} H_{z+1}^2 &= \frac{1}{2} \mathcal{A}_{z+1} E^2 - \frac{1}{2} E H_{z+1}^2 + \frac{1}{2} \mathcal{O} \mathcal{A}_{z+1}^2 - \frac{1}{2} \mathcal{O} H_{z+1}^2 \\ &= E H_{z+1} \cdot H_{z+1} \mathcal{O} - \frac{1}{2} E \mathcal{O}^2 + \frac{1}{2} \mathcal{A}_{z+1} E^2 + \frac{1}{2} \mathcal{O} \mathcal{A}_{z+1}^2 \end{split}$$

or toujours par pythagore $EO^2 = A_{n+1} E^2 + OA_{n+1}^2$ donc $A_{n+1} H_{n+1}^2 = EH_{n+1} *H_{n+1} O$ (franchement désolé pour la lourdeur des notations!)

$$\mathcal{A}_{z+1}H_{z+1}^2 = \left(\frac{1}{2}\mathcal{A}_{z+1}E_{z+1}\right)^2 = \left(\frac{\mathcal{L}}{2^{z+4}}\right)^2 = \frac{\mathcal{L}^2}{4^{z+4}} = \frac{64z_0^2}{4^{z+4}} = \frac{z_0^2}{4^{z+4}}$$
 or

et $EH_{n+1} = H_{n+1} H_n$ (évident par Thalès !) = $OH_{n+1} - OH_n = r_{n+1} - r_n$ et encore, $H_{n+1} O = r_{n+1}$ donc :

$$\frac{J_0^{2}}{4^{-B+1}} = \left(J_{B+1} - J_{B}\right)J_{B+1}$$

Eh bien, la voilà, notre relation de récurrence ! C'est d'ailleurs un polynôme en r_{n+1} , qui est évidemment positif. On extrait donc la seule racine positive du polynôme et on obtient :

$$T_{x+1} = \frac{T_x + \sqrt{T_x^2 + \frac{T_0^2}{4^x}}}{2}$$

Lorsque n augmente, le polygone P_n tend à se confondre avec le cercle de périmètre $L=8r_0=2$ πr_n (2 $\pi *rayon...$) donc :

$$\frac{L}{2r_{x}} \xrightarrow{x \to \infty} \pi$$

Intéressant, non ? Et pas si mauvais en termes d'efficacité!

Essais

Regardons cela de plus près...

L'expression $\frac{J_0^2}{4^{\frac{n}{n+1}}} = (J_{n+1} - J_n)J_{n+1}$ fait penser à l'aire d'un rectangle de côtés r_{n+1} et r_{n+1} - r_n . La suite géométrique des aires de ce rectangle serait donc de raison 1/4. A priori, la relation entre r_{n+1} et r_n devrait elle aussi se comporter comme une suite géométrique, et la convergence devrait être linéaire $(-Log(r_n)=a^*n+b)$... Vérifions en prenant L=8, et donc $r_0=1$ (le choix de L n'influe pas sur le résultat car la relation entre r_{n+1} et r_n est homogène en L):

n=5	3,14 22 (2)		
n=10	3,14159 32 (5)		
n=50	28 décimales exactes		
n=100	60 décimales exactes		

Tout à fait, une bonne petite convergence 3n/5, voilà qui est fort honorable!

Accélération de la convergence :

Ce qu'il y a de bien avec le *Delta2* d'<u>Aitken</u>, c'est qu'il y a toujours une accélération, si minime soit elle. Mais alors lorsqu'elle est gigantesque, quelle euphorie! Regardons les essais:

	Sans Aitken	Avec Aitken	Avec Aitken itéré
n=5	3,14 22 (2)	3,14159 508 (5)	3,14159265 59 (8)
n=10	3,14159 32 (5)	3,1415926535 92 (10)	16 décimales exactes
n=20	3,1415926535 903 (10)	23 décimales exactes	35 décimales exactes
n=50	28 décimales exactes	59 décimales exactes	90 décimales exactes

C'est tout bonnement incroyable ! Aitken multiplie par plus de 2 la performance la suite qui atteint une convergence de 1.2n.

Il me semble bien que c'est le meilleur résultat obtenu avec $\underline{\text{Aitken}}$ pour les suites convergeant vers Pi.

Et regardez les résultats avec <u>Aitken</u> itéré (on applique 2 fois le *Delta2*)! Vu la précision limite de mon calculateur (100 décimales) et la sensibilité du *Delta2*, il est même possible que le résultat soit encore meilleur.

On atteint avec <u>Aitken</u> itéré une précision supérieure à *1.6n* et qui va en s'améliorant!

Par Boris Gourévitch "L'univers de Pi" http://go.to/pi314 sai1042@ensai.fr